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The electromechanical properties of the Outer Hair Cell (OHC) have been refor-
mulated in terms of acoustic variables. It is anticipated that the acoustic variable
formulation will be more useful for incorporating OHC electromechanics into cochlear
micromechanics. For guidance on the interdependency of the acoustic and electrical
quantities and to aid physical intuition we also present piezoelectric circuit diagram
for the OHC.

1 Introduction

The equations for a cylindrical elastic sheathed outer hair cell are [1]
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where Pz,t are the external and internal pressures, lz is the length of the cell,
δl′z represents a change in length, with positive values corresponding to in-
creased length, R and δR represent the radius and change in radius, h is the
effective thickness of the cell wall, ez = hEz/

(

1 − kν2
)

, ec = hEc/
(
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)

,

e = νhEc/
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, where Ez > 0 is the axial Young’s modulus, ν is a
Poisson ratio (0 ≤ ν ≤ 0.5) for the axial and circumferential directions with
ν = νzc = νcz, k ≡ Ec/Ez such that 0 < k ≤ 1, in terms of either the circumfer-
ential or axial Young’s modulus Ez and Ec respectively.

If the standard sign convention is followed, δl′ and δR indicate increases in
length and radius and the terms involving pressure are signed so that a positive
value indicates a tension in the wall of the cell. The physical interpretation of
(1) involves the direct stretching in the axial and circumferential directions, and
includes the membrane’s Poisson coupling stiffness, represented by e.

Equation 1 is the two-dimensional Hooke’s law for the cell. On the left of
the equal sign are the stresses (tensions) on the membrane, expressed in terms
of pressure. The force AePt, where Ae = πR2, divided by the circumference



2πR, is the axial tension, acting from within. Since the internal Pt and external
Pz pressure act on opposite sides of the end-cap, their signs must differ. The
stress acting in the circumferential direction may be determined by computing
the total force in this direction, Pt × 2R × lz, and dividing by the length over
which it is applied 2lz.

The matrix of stiffness coefficients ([ez , e; e, ec]) is symmetric due to mem-
brane reciprocity. The axial and radial stresses and strains are coupled by a
“Poisson stiffness” e which accounts for the axial shortening of the membrane as
the circumference increases. To visualize this it is helpful to think of the mem-
brane surface laid out flat. When e is nonzero, as the membrane is stretched
in one direction, it becomes shorter in the other. This Poisson coupling induces
a coupling between the cell’s endcap and wall areas, leading to a volume rate
change difference which we denote the Poisson Volume velocity Vp, elaborated
upon in the next section.

2 Results

2.1 Change of sign

We next define a new length δlz ≡ −δl′z by changing the sign of δl′z, so that
a positive externally applied pressure Pz gives a positive axial impedance, as
required by circuit theory conventions. This transformation leads to
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After this transformation, a shortening of the cell corresponds an increasing δlz.

2.2 Acoustic variables
Equation 2 must be transformed so that the products of the port variables have
units of power. One may work in either mechanical variables [F, l̇] or acoustic
variables (P , V̇). Since the cell’s turgor pressure Pt is not conveniently repre-
sented as a force, it is best to use acoustical variables, which are natural when
working with basilar membrane models.

The axial volume velocity V̇z is obtained by multiplication of l̇z by the area
of the end cap Ae ≡ πR2. Likewise the radial volume velocity V̇r is obtained by
multiplication of Ṙ by the wall area Aw ≡ 2πRlz. These definitions follow from

V̇ = AwṘ + Ae l̇
′

z = V̇r − V̇z (3)

where V̇ is the net volume velocity (the time rate of change of the cell volume
V = Aelz = AwR/2). A related definition is the Poisson volume velocity

V̇p = V̇r + V̇z. (4)



corresponding to the differential wall and endcap volume velocities resulting from
the Poisson coupling stiffness e.

Appling these definitions to (2) results in the cell’s acoustic impedance matrix
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where s = iω is the Laplace frequency. In this acoustic-impedance model, the
axial volume velocity is into the cell while the radial volume velocity is out
of the cell. For example, when e = 0 an increase in the externally applied
pressure (δPz > 0) results in an increase in Vz (i.e., δVz > 0), corresponding to
a shortening of the cell.

2.3 Physics of the piezoelectric effect.

Warren Mason was the first to show that as a piezoelectric crystal is compressed,
the material’s bound charge q moves proportionally to the length change δl,
namely q ∝ δl [2]. In the same publication Mason provids a summary of his
experimental results in terms of an electrical equivalent circuit. If one assumes
that the OHC is piezoelectric, then the OHC model may be implemented as
shown in Fig. 1, via two transformers.

The two volume velocities V̇z and V̇r give rise to the two currents (charge
flows) q̇z and q̇r which are integrated by the membrane capacitance Cm, resulting
in to voltage vm(t) across the capacitor. Likewise, a change in voltage across the
membrane causes a force on the embedded charge, giving rise to two independent
strains in the membrane, resulting in a net pressure change (i.e., pr and pz). The
transformer relations that relate these efforts (p, v) and flows (q̇, V̇) are

pz = φzvz , pr = φrvr

q̇z = φzV̇z, q̇r = φrV̇r.
(6)

Define compliances cz, cr and c shown in Fig. 1 as capacitors, as the recip-
rocal of stiffnesses (c ≡ 1/k),

kz = 1/cz ≡ (2ez − e)/RV

kc = 1/cr ≡ (ec/2 − e)/RV

k = 1/c ≡ −e/RV .
(7)

Having defined the transformers in (6), one may proceed to write down the
elastic circuit equations from the circuit diagram
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Figure 1. Circuit diagram corresponding to (8).

The first two rows are the loop pressures while the third row is a nodal
equation taken at the top of element Cm. This derivation requires the use of (6)
and (4). Equation 8 is related to Eqs. (1-3) of [3].

After some algebra the piezoelectric OHC model impedance matrix is
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Via a term-by-term comparison, the OHC impedance matrix elements zij

are defined by the elements of (9). For example z11 = (kz − k)/s + φ2
z/sCm.

Note the term s = iω must be introduced in the denominator to transform each
stiffness into an impedance.

Note that this impedance (stiffness) matrix is positive–symmetric, as re-
quired by the electrical circuit representation of Fig. 1. Since every impedance
matrix is positive definite, all the codeterminants must be positive. The defini-
tion of a positive definite matrix, in this context, requires that the total power

V̇z(Pz − Pt) + V̇rPt + q̇mvm (10)
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Two bulk admittances are relevant to the circuit of Fig. 1, the unconstrained
(i.e., Pz = 0) bulk soma admittance
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and the unconstrained membrane Poisson admittance due to ν
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The physical interpretation of these two bulk admittances are fundamental.
The first represents the net volume velocity of the cell per unit pressure. The
second represents the proportion of Poisson current Vp through the capacitor
labeled c in Fig. 1. This flow depends only on e (not on ez or ec) (see (7)).
When e → ∞, c → 0 and V̇p → 0. Due to the minus sign in the numerator of
(12), Yν < Yp, for the case of the unconstrained cell. In the in vivo case (i.e.,
in the constrained cell), Yν = 0. Relations for these admittances in terms of the
membrane parameters will be evaluated next.

This concludes the nontrivial transformation from stress-strain membrane
variables to acoustic variables.

2.4 Incorporation of Iwasa and Chadwick results

Iwasa and Chadwick (1992) [1] measured the relative axial length change δl′z/lz
and the relative cell radius change δR/R, as a function of the soma turgor pres-
sure Pt, for isolated OHCs. These measurements were made under the condition
of no applied axial force (Pz = 0), and with vm = 30 mv. Note that the cell’s vol-
ume changes during this measurement, thus V̇ of (3) represents the flow through
the pipette.

Iwasa and Chadwick found that the relative length δz and radius δr change
are proportional to the turgor pressure, namely

δz ≡ δl′z/lz ≈ GzPt, δr ≡ δR/R ≈ GrPt. (14)

From Fig. 2 of [1], Gr = 0.13 × 10−3 [Pa] and −Gz ≈ 0.069 × 10−3. We may
rewrite (14) in terms of the acoustic variables (The cell becomes shorter (i.e.,



δVz > 0) with increasing Pt (i.e., δPt > 0) since −Gz > 0.)

V̇z = −sGzVPt, V̇r = 2sGrVPt (15)

defined in Fig. 1. From (5) with Pz = 0 one may show that
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Given (4) and (15),

V̇p = (2Gr − Gz)sVPt = 0.329× 10−3sVPt, (19)

where Pt is in Pascals, resulting in

Yp = 0.329× 10−3sV . (20)

The product of Vp and Pt represents the Poisson coupled elastic energy.
Define γ ≡ Gr/Gz. From Fig. 1 of [1], γ = −1/0.43 = −2.326, while

from Fig. 2 of [1], γ ≡ Gr/Gz = −1.884. These two estimates come from
different experiments and 6 different cells. An average of these two estimates
gives γ = −2.1. The parameter γ may be interpreted as the reciprocal of the
Poisson ratio of some presumed circumferential tubes around the the cell (like
barrel hoops). If γ is exactly 2, it would imply that the membrane enveloping
the OHC conserves volume. (This might represent fluid and other structures
trapped between the cisternae and the cell plasma membrane, for example.)
The case of incompressible tubes, γ = −2, is close to the average value of Iwasa
and Chadwick (1992) data. Thus

γ ≡
Gr

Gz

≈ −2 ± 40%. (21)

From this point on we shall assume that γ = −2.



From (15)

V̇r

V̇z

= −2γ ≈ 4 (22)

For the conditions of the Iwasa and Chadwick (1992) experiment, combining (4)
with (21) gives V̇p = 5V̇z. while (3) and (22) give V̇ = 3V̇z.

2.5 The in vivo cell
At acoustic frequencies, or in the in vivo case when the cell is sealed, V̇ = 0.
From (3) V̇r = V̇z, leading to V̇p = 2V̇z. Assuming no axial load (Pz = 0), and a

constant applied voltage (q̇m = 0), the ratio of V̇r to V̇z may be found from (5)

V̇r

V̇z

= −
2ez − e

ec/2 − e
= −

kz

kc

. (23)

Combining (22) and (23) gives kz ≈ −4kc, or equivalently cz ≈ −cr/4. Since
both −Gz and Gr were found to be greater that zero (see (16) and (17)) it follows
that ezec > e2 and that e > ec/2. Thus from (7), kc < 0. From (23), this is the
same as saying that as the turgor pressure in increased, the cell becomes fatter
and shorter.
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Figure 2. Final circuit diagram with turger pressure as the source. Since the net volume at
acoustic frequencies must be zero, V̇z = V̇r, and V̇p = 2V̇z .

Figure 2 shows the configuration of the final curcuit with the membrane
compliances shown as voltage dependent, the volume velocity constrained to be



zero, as required at acoustic frequencies, with the turger pressure shown as a
battery, the acoustic power source of the cell.

Since V̇z = V̇r, and V̇p = 2V̇z, using the circuit of Fig. 2 one may easily find
the turgor pressure and evaluate the axial acoustic impedance of the cell and
relate the nonlinear capacitance to the axial loading on the cell. From Eq. 9

Pt =
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kz + kc

Pz +
φrkz − φzkc

kz + kc

vm

which shows how the turger pressure depends on both the voltage and the axial
pressure. This expression may then be substituted back into Eq. 9, and the
results may be simplified, for the intact cell constrained to a constant volume,
giving
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This leads to a very simple result. For the OHC to be nonlinear, either kz and
or kr must be voltage dependent. Furthermore, this leads to a direct prediction
about the voltage dependent nonlinear capacitance, and its relationship to the
voltage dependent stiffness and displacement.

3 Conclusion

We have reformulated the OHC constitutive equations in terms of acoustic vari-
ables and summarized the electromechanical properties of the OHC with a piezo-
electric circuit following Mason’s classic model [2]. Future steps will to incor-
porate OHC NL capacitance along with voltage controlled stiffness results into
this scheme. As these data are nonlinear our circuit will necessarily acquire non-
linear voltage–controlled circuit elements. It is our hope that the incorporation
of voltage dependent values for ez(Vm), ec(Vm) and e(Vm) will be sufficient to
represent all of the nonlinear response of the OHC.

We would like to thank Robert Haber for discussions on the form of (1) and
on the physical intrepretation of the axial to radial coupling.
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